
Multi-State Discriminative Video Segment
Selection for Complex Event Classification

Prithviraj Banerjee and Ram Nevatia

University of Southern California, Los Angeles, USA

Abstract. Recognizing long range complex events composed of a se-
quence of primitive actions is a challenging task, as videos may not be
consistently aligned in time with respect to the primitive actions across
video examples. Moreover, there can exist arbitrary long intervals be-
tween, and within the execution of primitive actions. We propose a novel
multistate segment selection algorithm, which pools features from the
discriminative segments of a video. We present an efficient linear pro-
gramming based solution, and introduce novel linear constraints to en-
force temporal ordering between segments from different states. We also
propose a regularized version of our algorithm, which automatically de-
termines the optimum number of segments to be selected in each video.
Furthermore, we present a new, provably faster O(N logN) algorithm
for the single state K-segment selection problem. Our results are vali-
dated on the Composite Cooking Activity dataset, containing videos of
cooking recipes. 1

1 Introduction

Human activity recognition is a fundamental problem in computer vision. The
difficulty of the task varies greatly based on the complexity of the actions them-
selves, and the imaging conditions. It is useful to characterize the activities as
falling into three broad classes. Firstly, is the class of relatively short period
activities consisting of primitive actions such as shake, hug and wave [1], and
snippets of sport activities like diving, golf-swing [2] etc. A second category of ac-
tivities consist of complex events naturally described as a composition of simpler
and shorter term primitive actions; examples include videos of cooking recipes
and assembly instructions, which take place in a structured environment consist-
ing of fixed camera and consistent background structures, such as kitchen tops
and shelves. Lastly, there is the category of videos in the wild, such as amateur
video uploads on YouTube, where there is significant variety in camera pose and
challenging background environments.

The focus of this work lies on the second category of activities. Even though
the three categories face common challenges caused by ambiguities inherent to

1 We thank Marcus Rohrbach for his help in providing the MP2 Cooking Composite
Activities dataset. This research was supported, in part, by the Office of Naval
Research under grant #N00014-13-1-0493.

2 Prithviraj Banerjee and Ram Nevatia

Takeout Bowl Takeout FlatGrater Takeout PlasticBag Remove Package Grate Cheese Package Cheese Put In PlasticBag

Takeout
CuttingBoard

Takeout FlatGrater Takeout PlasticBag Remove Package Grate CheeseMove FlatGrater Scratch Off Cheese Package Cheese Put In PlasticBag

Video 1

Video 2

Fig. 1: Composite event Grating Cheese is composed of numerous primitive
actions which occur with varying durations and arbitrary gaps between them,
making it a challenge to learn a composite event classifier.

images and variations in the actor clothing, style and background variations,
there are also significant differences. For the shorter-term activities, local fea-
tures such as STIPs or Dense Trajectory (DT) features aggregated by methods
such as Bag of Words [3, 4] or Fisher Vectors [5] have been found to give good
performance. However, such methods are not adequate for the more complex
events due to the much larger variations possible in such activities. Consider the
example of grating cheese illustrated in figure 1, where the relatively straight-
forward task of retrieving cheese from the refrigerator, unwrapping it, grating
it and replacing the cheese back, is performed in varying styles by two different
actors. Some actors retrieve a bowl (or a tray) before (or after) retrieving the
grater, resulting in only a loose temporal ordering between the primitive states
of the activity, making it difficult to estimate a fixed temporal distribution of the
states in a video sequence. Moreover, there are significant variations in the du-
ration of each state due to different speeds and styles of the actors, and optional
actions like moving the grater may cause large gaps between the essential states
of the event. The task becomes even more challenging due to gaps appearing
within the execution of a state, as actors tend to take breaks during long ac-
tions, like grating cheese, and hence violating the usual assumption of temporal
continuity with respect to primitive action executions. However, we note that
certain long range temporal relationships are not violated, such as retrieving
the cheese before grating it, and a composite event recognizer should learn such
relationships.

Furthermore, such videos may contain many intervals that are not of direct
relevance to the activity of interest, for example, resting in between parts of
the task. Some of these variations may be captured by spatio-temporal feature
pooling strategies [3, 6], where the video is divided into spatio-temporal grids of
histograms. However, rigid grid quantizations are not likely to be sufficient for
un-aligned and un-cropped videos [4], and are sensitive to temporal variations in
action executions. There has been work representing such activities by dynami-
cal graphical models such as Dynamic Bayesian Networks [7, 8]; however, these
representations can be highly sensitive to varying time intervals and spurious
intervening activities.

Title Suppressed Due to Excessive Length 3

SA SB SC

+ + +

j

T

A f

j

T

B f

j

T

C f

φ(x) =[φA(x) , φB(x) , φC(x)]LSVM
Optimization

Finite State Machine :

Fig. 2: Flow diagram for multistate dynamic feature pooling algorithm. A 3-
state finite state machine is assumed, which specifies a temporal ordering as
SA < SB < SC . Segment classification scores are computed w.r.t each state,
and the discriminative segments are selected by solving a linear programe. The
aggregate feature statistics from the selected segments are pooled to compute a
global feature statistic Φ(x). which is used for training a Latent-SVM classifier,
and hence learn the optimal activity classification weights θ. The weight learning
and feature poolling is repeated iteratively till convergence.

We suggest that dynamic pooling strategies offer a suitable compromise be-
tween static pooling and the rigid dynamical models. Dynamic pooling has been
used in previous works, such as [2, 9, 10], which identify the discriminative video
segments to pool features from, and therefore adapt the pooling strategy to the
observed features in the video. However, such methods assume restrictive con-
straints on the temporal positioning of primitive actions, and do not allow for
arbitrary length inter-action gaps, and furthermore restrict the hypothesis space
for primitive actions to continuous video segments only.

Our work is closest in spirit to [11], which proposed a dynamic pooling algo-
rithm that treats the locations of characteristic segments of the video as latent
variables which are inferred for each video sequence in a LSVM framework. The
possible set of segment selections is combinatorial in size, and they propose a
fractional integer linear programming based solution to obtain the exact solu-
tion. However, [11] does not distinguish between the primitive actions in a video
during pooling, and incorporates only weak pair-wise temporal associations by
considering an exhaustive set of segment pairs during both training and testing
phase, making it unsuitable for long-term complex event recognition.

We are motivated to extend the segment selection algorithm [11] to incorpo-
rate learning of temporal relationships between primitive actions, and propose
a novel temporal segment selection algorithm for complex event recognition.
We formulate the task of multi-state dynamic feature pooling as a linear pro-
gramming optimization problem, where the discriminative weights for feature
classification are learned iteratively in a latent support vector machine (LSVM).
Figure 2 presents an overview of our approach while assuming a three state

4 Prithviraj Banerjee and Ram Nevatia

model. Aggregate statistics, such as histograms of spatio-temporal features are
computed from overlapping segments of the video, and a classification score
is assigned to each segment w.r.t each state. The discriminative segments are
identified on a per-state basis, and a global feature vector Φ is pooled from the
selected segments, which is used to train the LSVM classifier. Our algorithm
is simultaneously (1) robust to arbitrary gaps between primitive states while
respecting their temporal ordering, (2) robust to gaps within primitive states
caused by varying durations of primitive action executions, and (3) selects the
discriminative sub-segments of the video for classifying the composite event.
Our algorithm eschews any manual annotations of the states during training,
and instead automatically infers the important states from the training data.

Our key contributions are multi fold: (1) We present a new provably fast solu-
tion to the K-segment selection problem, which improves the running time of the
previously proposed [11] fractional linear program based solution to O(N logN),
(2) we present a regularized linear programming optimization for multi-state K-
segment selection for dynamic feature pooling, and finally (3) propose a novel
extension to our linear program for automatically determining the number of
discriminative segments in a video, and hence avoiding pooling features from
non-informative (w.r.t to the complex event label) video segments.

We validate our algorithm on the recently introduced Composite Cooking
Dataset [12], which consists of a collection of cooking recipe demonstrations
performed by multiple actors while following a weakly enforced script. Each
recipe is a long term composite event, consisting of a series of primitive ac-
tions like opening cupboard, taking out toaster, peeling vegetables etc, and we
show significantly improved results on the dataset, along with an analysis of the
discriminative segments selected by our algorithm.

2 Related Work

We focus our survey on classification algorithms using different feature pooling
strategies, and also briefly review algorithms modeling temporal structure of
complex activities.

Static pooling algorithm model the (x,y,t) distribution of features in the
3-dimensional video volume, and fix the pooling strategy before commencing
classifier training, and do not adapt dynamically to the features statistics ob-
served during training. A popular class of pooling strategy divides the video into
multiple spatio-temporal grids [3, 6], and concatenates the feature statistics com-
puted from each of the grids into a global video-wide feature vector, while other
approaches construct interest point centric histograms [13, 14, 4], where feature
statistics are accumulated from static spatio-temporal grids centered around
each detected interest point. However, the static nature of the feature pooling
grids assumes that the underlying action is consistently aligned with the video,
and makes it sensitive to time and duration shifts in action instances.

In real life videos, the actions of interest might occur in only small a frac-
tion of the frames. Restricting the classifier to the important video segments

Title Suppressed Due to Excessive Length 5

[15, 16] has been shown to improve recognition accuracy, emphasizing the im-
portance of dynamic feature pooling algorithms, which only compute feature
statistics from the important segments of a video, determined dynamically dur-
ing training. While some algorithms ignore the temporal structure, and select
only a single continuous subsequence [15, 17] of the video, others represent the
video as a sequence of atomic segments [9, 2, 10] and either learn or manually
define temporal relationships between the segments. A variety of atomic seg-
ment representations have been proposed such as histogram of codewords over
temporal [2] and spatio-temporal volumes [10], poselet based representation of
human actions [18], and scene context based video decomposition [19]. However
they either ignore temporal ordering [19], or assume well cropped videos with-
out arbitrary gaps between the atomic segments [2, 10], while [18] selects only a
small number of discrete frames, and requires a manually defined set of relevant
poselets, further restricting it to primitive single-human actions.

A popular class of approaches represent the complex event as a sequence
of state transition of a finite state machine, where the state definitions can be
semantic, such as human key-poses [7] or linear interpolations between 3D joint
positions [8]. Other approaches favor non semantic state definitions based on low
level feature, such as discriminative motion patches [20] and histogram of gradi-
ent/flow features [21]. The event label is inferred using either logic models [22], or
generative [23] and conditional [24, 8] probabilistic graphical models like HMM
and CRF. Such methods have shown robust performance on short duration activ-
ities like walking, jumping etc., however due to their inherent Markovian nature,
they are unable to handle long range dependencies between primitive action seg-
ments, and are sensitive to variations in duration and style of action execution.
Recently, [21] proposed a conditional variable duration HMM model for action
classification on youtube videos, however it does not distinguish between video
segments based on relevance to the composite event, and instead attempts to
model every segment as a valid state, making it susceptible to spurious features
from unimportant segments.

3 Pooling Interest Point Features for Event Classification

Classical framework for event recognition using low level image features consists
of a three stage process: detection, pooling and classification. The detection stage
consists of computing a set of descriptors xi = {xk} from spatio-temporal inter-
est point detections in the ith video. The pooling stage involves combining the
multiple local feature descriptors into a single global feature Φ(xi) representa-
tion of the video. Lastly in the classification stage, discriminative classifiers like
support vector machines are trained using the global features as training data.

Our contributions are in the feature pooling stage of the framework. We
present a new, provably faster, algorithm to a previous segment selection algo-
rithm by Li et al [11]. We further propose a novel algorithm for pooling features
from the discriminative time intervals of a video, while modeling the tempo-
ral dynamics present in the activity in a joint optimization framework. We also

6 Prithviraj Banerjee and Ram Nevatia

present an extension to our algorithm which automatically determines the opti-
mum number of segments to select.

3.1 Discriminative Segment Selection

We first describe the basic framework of discriminative segment selection, where
the video is divided into N equal-length temporal segments. Let fj be the locally
pooled feature computed from the jth segment, where the pooling criteria can be
as simple as computing a histogram of codewords detected within the segment.
The global feature descriptor is computed by pooling a subset of the segments:

Φ(x,h) =

∑
j fjhj∑
j ejhj

, Φ∗θ,x = max
h
θTΦ (x,h) = max

h

∑
j θ

T fjhj∑
j ejhj

(1)

where hj is a binary variable indicating the selection of the jth segment, and
ej is a strictly positive constant which normalizes the Φ(·) with respect to the
number of segments selected. A variety of representations can be chosen for fj
and ej , for example, setting fj as the histogram of codewords and ej as the sum
of codewords appearing in the jth segment results in the classical BoW feature.

The discriminative weight vector θ computes the score cj corresponding to
each segment, where the score is proportional to the importance of the segment
in classifying the given event. The weight vector θ is learned using a Latent-SVM
optimization [25, 26]:

min
θ

1

2
‖θ‖22 + C

∑
i∈P

max
(
1, Φ∗θ,xi

)
+ C

∑
i∈N

max
(
0, 1 + Φ∗θ,xi

)
− C

∑
i∈P

Φ∗θ,xi
(2)

where P and N are the set of positive and negative training examples.

3.2 K-Segment Selection (KSS)

Inference of the latent variable h in equation 1 determines the important seg-
ments in a video, and the inference algorithm can be stated as a K-segment
selection problem, where the objective is to select the K most optimum seg-
ments from a video for classification purpose, and is equivalent to solving the
following fractional integer linear program:

KSS(K) : maximize

∑N
j=1 cjhj∑N
j=1 ejhj

s.t.
∑N

j=1
hj = K , ∀jhj ∈ {0, 1} (3)

where cj = θT fj is the classification score value corresponding to the feature
vector fj , pooled from the jth segment. Li et al [11] proposed a relaxed linear
programming solution to solve the above integer problem, where the fractional
linear program is transformed to an equivalent standard linear program [27]. An
optimal solution to the linear program is computed using the standard simplex
algorithm, which has exponential worst case complexity, and on average polyno-
mial time complexity. We next present a provably faster algorithm to solve the
K-segment selection problem.

Title Suppressed Due to Excessive Length 7

3.3 Linear Time Subset Scanning

Our key observation is that selecting the optimum K segments in a video by
optimizing equation 3, is equivalent to solving the Linear Time Subset Scanning
(LTSS) problem [28]. We give a brief introduction to the LTSS problem, and refer
the readers to [28] for the details. Let us define a subset S = {j 3 hj = 1}, and
define the following two additive statistics over the subset: X(S) =

∑
j∈S cj and

Y (S) =
∑
j∈S ej . We further define a subset scoring function F (S) = F (X,Y) =

X(S)
Y (S) according to which we want to select the best possible subset. For all scoring

functions F (S) satisfying the LTSS property, the optimal subset S maximizing
the score can be found by ordering the elements of the set according to some
priority function G(j), and selecting the top K highest priority elements.

A scoring function F (S) satisfies the LTSS property (Theorem 1 [28]) with
priority function G(j) =

cj
ej

, if (1) F (S) = F (X,Y) is a quasi-convex function of

two additive sufficient statistics of subset S, (2) F (S) is monotonically increasing
with X(S), and (3) all additive elements of Y (S) are positive. In our case, the

scoring function F (S) =
∑

j∈S cj∑
j∈S ej

=
∑

j cjhj∑
j ejhj

= F (h) is a ratio of linear functions

in the segment selector variable vector h, and hence can be shown to be quasi-
convex [27] using a simple analysis of its α-sublevel sets. Monotonicity of F (h)
w.r.t. X(S) is shown due to them being linearly related, and furthermore, ej are
strictly positive by design, as they represent the normalization factor for each
segment. Hence, the K-Segment Selection problem satisfies the LTSS property
with priority function G(j) =

cj
ej

. To select the optimum K segments, we sort the

set of segment scores:
{
cj
ej

}N
j=1

, and select the segments corresponding to the top

K scores. Therefore our algorithm reduces the K-segment selection problem to a
simple sorting problem with a time complexity of O(N logN), which is an order
of magnitude faster than solving a linear program. Note, that we only require an
unordered list of the top K segments, and hence, one can select the Kth largest
element using the linear time median-of-medians selection algorithm, and select
the top K segments through a linear traversal over all the segments, which solves
the problem in O(N) linear time.

4 Multistate K-Segment Selection (MKSS)

The K-segment selection algorithm [11] does not consider the temporal relation-
ships between the selected segments, and hence ignores the temporal ordering of
primitive action sequences composing a complex event. In effect, it can be viewed
as a single state segment selection. We are motivated to extend the K-segment
selection algorithm to a multi-state formulation, where each state corresponds to
discriminative primitive actions present in the video. Let us consider a two state
problem, where our objective is to select the optimum sub-segments for both
state A and state B, such that state A occurs in the video before state B. This
is equivalent to a finite state machine where state A transitions to state B. We

8 Prithviraj Banerjee and Ram Nevatia

define hA,hB ∈ {0, 1}N as the segment selection indicator vectors corresponding
to the two states. To ensure the temporal ordering in the selected subsegments,
we construct the following constraint:

KhBj +
∑N

t=j
hAt ≤ K 1 ≤ j ≤ N (4)

The linear equation defines a mutual exclusion constraint on states A and B,
such that if the jth segment is assigned to state B, then all temporal successor
segments appearing after j cannot be assigned to state A. Similar constraints
can be placed on predecessor segments of state B when selecting the jth segment
for state A. Using equation 4, we can build any left to right transition finite state
machine with arbitrary number of states. Note, that self transitions are implic-
itly modeled, as the selected segments of a particular state can be arbitrarily
separated.

State duration models specify the expected time a Markovian system will
spend in a particular state. Similar duration constraints can be placed on our
state models by specifying a compactness constraint:

KhAj +
∑j−δ

t=1
hAt +

∑N

t=j+δ
hAt ≤ K 1 ≤ j ≤ N (5)

The compactness constraint specifies that all the segments selected for the state
A, must lie within a temporal window of length 2δ, by placing a mutual exclu-
sion constraint on the jth segment and all other segments lying outside the 2δ
window. We combine both the temporal constraints and the compactness con-
straints with the K-segment selection problem, and formulate it as a relaxed
linear programming optimization:

MKSS (K) = Maximize

∑
s∈S

∑N
j=1 c

s
jh
s
j∑

s∈S
∑N
j=1 e

s
jh
s
j

+a log
∑

s∈S
‖hs‖1 (6)

s.t. C1 : 0 ≤ hsj ≤ 1 ∀s ∈ S, 1 ≤ j ≤ N

C2 :
∑N

j=1
hsj = K ∀s ∈ S

C3 : Khsbj +
∑N

k=j
hsak ≤ K ∀(sa, sb) ∈ T , 1 ≤ j ≤ N

Khsaj +
∑j

k=1
hsbk ≤ K ∀(sa, sb) ∈ T , 1 ≤ j ≤ N

C4 :
∑

s∈S
hsj ≤ 1 1 ≤ j ≤ N

C5 : Khsj +
∑j−δ

k=1
hsk +

∑N

k=j+δ
hsk ≤ K ∀s ∈ S, 1 ≤ j ≤ N

where S is the set of states in our model, and (sa, sb) ∈ T is the set of temporal
order constraints where state sb appears only after state sa. C1 is the linear re-
laxation constraint over the binary indicator variables. C2 specifies that exactly
K segments should be selected corresponding to each state. C3 and C5 corre-
spond to the temporal and compactness constraints respectively. C4 ensures that

Title Suppressed Due to Excessive Length 9

no segment is counted twice during state assignments. The resulting optimiza-
tion is a fractional linear program, where the objective function is a ratio of
linear functions. Solving fractional linear programs is a well explored problem in
operations research, and can be solved using a simple transformation [27] to an
equivalent standard linear program:

Maximize cTh+d
eTh+f

Gh �m
Ah = b
eTh + f > 0

⇐⇒

Maximize cTy + dz
Gy −mz � 0
Ay − bz = 0
eTy + fz = 1, z ≥ 0

where y = h
eTh+f

and z = 1
eTh+f

. The standard linear program can be effi-

ciently solved using off the shelf solvers2, as it consists of O(N |S|) variables and
O(N |S|2) constraints, which is polynomial in the number of segments and states.

The optimal hs vector obtained by solving the linear program in equation
6 identifies the selected segments for pooling features corresponding to each
state s ∈ S. The global feature descriptor Φ (x) is defined as a concatenation
of features pooled from the individual states. Assuming a 3-state model such as
in figure 2, the global feature vector is computed as: Φ (x) = [ΦA, ΦB , ΦC] =[∑

j fjh
A
j∑

j ejh
A
j
,
∑

j fjh
B
j∑

j ejh
B
j
,
∑

j fjh
C
j∑

j ejh
C
j

]
, which is used to train an latent-SVM classifier.

5 Selecting Optimal Parameter K
The parameter K in the K-segment selection problem specifies the number of
segments to be selected. However the appropriate K value can vary from video
to video, and there is little intuition on how to compute an appropriate value.
One feasible criteria is to select the best K value by iteratively solving the K-
segment selection problem : K∗ = arg maxKKSS(K). It can be shown that the
optimum value of such an iterative procedure will always be K∗ = 1, i.e. only
selecting the segment with the largest ci

di
ratio. Consider the following inequality:

a2
b2
≤ a2+a1

b2+b1
≤ a1

b1
, which can be verified for all b1, b2 ≥ 0 using simple algebraic

operations. The inequality shows that any combination of multiple segments
will always have a lower ratio value than the single segment with the highest ci

di
ratio. A similar theoretical argument cannot be made for MKSS, however in our
experiments we observe that the optimum solution is for each state to select a
single best segment.

Previously, [11] addressed the problem by adding a logarithmic regularization
function : a log (‖h‖1), which favors choosing a larger number of segments. How-
ever choosing appropriate values of the hyper-parameter a is again non-trivial,
and it is estimated through cross-validation for each action category. In effect,
the regularization parameter a indirectly chooses the appropriate K∗ value, and
is equivalent to selecting K∗ through cross-validation. We next present an ex-
tension to our multistate segment selection algorithm for automatically selecting
the optimum number of segments.

2 http://www.gnu.org/software/glpk/

10 Prithviraj Banerjee and Ram Nevatia

5.1 Regularized Multistate Segment Selection (RMSS)

The segment selection criteria used in KSS and MKSS are such that the nega-
tively scored segments will never be selected. On the other hand, the segments
contributing a positively weighted score corresponds to the discriminative (w.r.t
classifying the composite event) segments in the video, and hence an appropri-
ate segment selection criteria should maximize the number of positively weighted
segments selected while satisfying the multi-state constraints. We define a vector
rsaj = 0.5×

(
csaj + |csaj |

)
which contains all the positive valued scores computed

from the segments for state sa, while the negative valued scores are set to zero.
We further define a segment selection constraint

∑N
j=1 r

sa
j h

sa
j ≥ ∆

∑N
j=1 r

sa
j

which ensures that at least a ∆ fraction of the positively weighted segments will
be selected as part of the optimum solution. The linear programming optimiza-
tion for regularized multistate segment selection takes only the positive weight
fraction ∆ as input parameter, and is defined as follows:

RMSS (∆) = Maximize

∑
s∈S

∑N
j=1 c

s
jh
s
j∑

s∈S
∑N
j=1 e

s
jh
s
j

, K̃ =

⌊
N

‖S‖

⌋
(7)

s.t. C1 : 0 ≤ hsj ≤ 1 ∀s ∈ S, 1 ≤ j ≤ N

C2b :
∑N

j=1
hsj ≤ K̃ ∀s ∈ S

C3 : K̃hsbj +
∑N

k=j
hsak ≤ K̃ ∀(sa, sb) ∈ T , 1 ≤ j ≤ N

K̃hsaj +
∑j

k=1
hsbk ≤ K̃ ∀(sa, sb) ∈ T , 1 ≤ j ≤ N

C4 :
∑

s∈S
hsj ≤ 1 1 ≤ j ≤ N

C5 : K̃hsj +
∑j−δ

k=1
hsk +

∑N

k=j+δ
hsk ≤ K̃ ∀s ∈ S, 1 ≤ j ≤ N

C6 :
∑N

j=1
rsaj h

sa
j ≥ ∆

∑N

j=1
rsaj ∀s ∈ S

rsaj = 0.5× (csaj + |csaj |) ∀s ∈ S, 1 ≤ j ≤ N

C7 :
∑N

j=1
hsaj ≥ (1− θ)

∑N

j=1
hsbj ∀sa, sb ∈ S∑N

j=1
hsaj ≤ (1 + θ)

∑N

j=1
hsbj ∀sa, sb ∈ S

where the parameter K̃ is the maximum number of segments which can be
selected per state in a video with N frames. The optimization does not restrict
each state to a constant K̃ number of segment selections; instead it relaxes
the equality constraint C2 with C2b in equation 7, which only places an upper
bound on the number of segments selected. It is also desirable that the number of
segments selected corresponding to each state is equally balanced across states,
so that a single state does not dominate the solution of segment selection. An
additional constraint C7 is added to ensure a balanced selection of segments
across states, within a margin of ±θ.

Title Suppressed Due to Excessive Length 11

The parameter∆ determines the number of segments selected in the optimum
solution. However the constraints in the RMSS(∆) optimization can be rendered
infeasible for certain values of ∆, in particular, if the ∆ value is too high, it is
likely that the state transition constraints cannot be satisfied for any combination
of segment selection. We further observe that there exists a ∆0 ≥ 0 such that
RMSS(∆) has a feasible solution for all ∆ ≥ ∆0, and hence the optimization
problem is monotonic in ∆ with respect to its feasibility. The monotonic behavior
suggests a simple binary search over ∆ to find the optimal ∆0 within an error
margin of ε in O

(
log 1

ε

)
iterations.

6 Experiments and Results

We evaluate our algorithm on the recently introduced Composite Cooking Dataset
[12]. The dataset contains 41 cooking recipe demonstrations like prepare ginger,
seperate an egg, make coffee etc, where the videos are recorded with a fixed el-
evated camera recording the actors from the front preparing the dishes inside a
kitchen. There are a total of 138 videos of ∼16 hours containing actions performed
by 17 different actors, and are shot at 29.4fps with 1624x1224 pixel resolution.
In our experiments, we use the pre-computed histogram of codeword features for
each frame, provided with the dataset. The codewords are computed over HoG,
HoF, motion boundary histograms and trajectory shape features, extracted from
densely sampled interest point tracks [29] in the videos.

We divide each video into overlapping segments of 100 frames each, as prim-
itive events like opening cupboard/refrigerator, retrieving utensils can be rea-
sonably captured using a 100 frame overlapping window. Next, we sum the
histogram of codewords from each frame within the jth segment, to construct a
single accumulated histogram feature fj . To setup the fractional linear program-
ming problems MKSS and RMSS, we normalize the features from each segment
using its L1 norm, and compute the scores values csj = θsfj for each state s
using the current value of the weight vector from the LSVM classifier. The nor-
malization constants esj are set to 1, and in effect, normalize the features based
on the number of segments selected. In our experiments, we avoided any action
or dataset specific tunning and set the regularization parameter as a = 5 for
all events, which we empirically observed to select a larger fraction of positively
scored segments in the video, and hence contributing more towards classifying
the composite event.

6.1 Comparisons with baselines

To establish a baseline, we implemented a bag of words based SVM classifier,
where the codewords in the video are globally pooled into a single histogram.
Figure 3 presents our results on the 41 composite cooking actions using a 6-
fold cross validation as suggested by [12]. As the BoW features compute only
globally aggregated statistics, their performance is quite low on complex long
range activities. We also implement a temporally binned BoW classifier, as the
one proposed by [3]. We experiment with three types of binning structures, where

12 Prithviraj Banerjee and Ram Nevatia

Action Labels BoW TB-3 TB-5 TB-7 MKSS-3 MKSS-5 MKSS-7 RMSS-3 RMSS-5 RMSS-7

Chopping a cucumber 0.11 0.14 0.11 0.15 0.12 0.15 0.11 0.12 0.16 0.12

Prepare carrots 0.19 0.33 0.39 0.42 0.39 0.39 0.45 0.38 0.39 0.42

Prepare a peach 0.23 0.11 0.20 0.09 0.10 0.13 0.08 0.17 0.13 0.11

Slice a loaf of bread 0.58 0.61 0.73 0.66 0.75 0.71 0.87 0.77 0.72 0.85

Prepare cauliflower 0.40 0.43 0.42 0.36 0.60 0.65 0.35 0.34 0.63 0.33

Prepare an onion 0.16 0.46 0.26 0.10 0.42 0.19 0.10 0.35 0.20 0.09

Prepare an orange 0.14 0.68 0.47 0.38 0.30 0.42 0.36 0.61 0.44 0.37

Prepare fresh herbs 0.38 0.24 0.14 0.18 0.24 0.20 0.22 0.22 0.22 0.18

Prepare garlic 0.18 0.31 0.12 0.07 0.31 0.32 0.14 0.31 0.16 0.30

Prepare asparagus 0.02 0.03 0.04 0.04 0.03 0.04 0.05 0.04 0.05 0.05

Prepare fresh ginger 0.14 0.37 0.23 0.09 0.12 0.19 0.08 0.14 0.21 0.07

Prepare a plum 0.41 0.18 0.11 0.09 0.36 0.18 0.22 0.61 0.21 0.61

Zest a lemon 0.14 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.17 0.20

Prepare leeks 0.23 0.33 0.32 0.46 0.42 0.34 0.43 0.34 0.33 0.38

Extract lime juice 0.42 0.48 0.49 0.53 0.44 0.49 0.50 0.46 0.47 0.43

Prepare a pomegranate 0.39 0.81 0.94 0.56 0.53 0.65 0.78 0.48 0.70 0.78

Prepare broccoli 0.20 0.40 0.42 0.47 0.45 0.45 0.46 0.45 0.45 0.60

Prepare potatoes 0.23 0.11 0.15 0.11 0.23 0.22 0.14 0.24 0.23 0.17

Prepare a pepper 0.10 0.16 0.08 0.09 0.14 0.11 0.10 0.18 0.11 0.12

Prepare a pineapple 0.55 0.37 0.48 0.51 0.56 0.74 0.61 0.73 0.77 0.62

Prepare spinach 0.10 0.28 0.31 0.36 0.58 0.58 0.58 0.50 0.28 0.44

Prepare a fresh chilli 0.23 0.05 0.05 0.06 0.09 0.14 0.20 0.10 0.14 0.20

Cook pasta 0.26 0.53 0.45 0.54 0.38 0.49 0.64 0.53 0.47 1.00

Separate an egg 0.65 0.47 0.60 0.63 0.52 0.63 0.57 0.63 0.63 0.56

Prepare broad beans 0.14 0.68 0.18 0.29 0.68 0.51 0.68 0.47 0.52 0.52

Prepare a kiwi fruit 0.15 0.23 0.23 0.10 0.11 0.18 0.11 0.22 0.10 0.12

Prepare an avocado 0.13 0.07 0.13 0.07 0.05 0.08 0.07 0.05 0.10 0.07

Prepare a mango 0.06 0.16 0.30 0.22 0.15 0.29 0.32 0.21 0.29 0.33

Prepare figs 0.30 0.06 0.07 0.07 0.09 0.13 0.22 0.10 0.14 0.21

Use box grater 0.42 0.75 0.49 0.39 0.65 0.63 0.57 0.73 0.71 0.57

Sharpen knives 0.75 0.63 1.00 0.75 0.67 0.67 0.75 0.75 1.00 1.00

Use speed peeler 1.00 0.10 0.10 0.10 0.20 0.33 0.25 0.20 0.20 0.20

Use a toaster 0.16 0.57 0.39 0.35 0.42 0.43 0.31 0.52 0.34 0.20

Use a pestle-mortar 0.55 0.55 0.59 0.65 0.63 0.60 0.63 0.65 0.60 0.50

Use microplane grater 0.20 0.49 0.23 0.20 0.18 0.26 0.29 0.21 0.25 0.27

Make scrambled egg 0.22 0.45 0.57 0.56 0.50 0.65 0.61 0.53 0.78 0.72

Prepare orange juice 0.64 0.65 0.81 0.69 0.81 0.83 0.83 0.81 0.83 0.78

Make hot dog 0.05 0.30 0.18 0.59 0.21 0.21 0.44 0.40 0.40 0.44

Pour beer 0.56 0.10 0.06 0.03 0.56 0.53 0.53 0.53 0.55 1.00

Make tea 0.28 0.46 0.33 0.35 0.53 0.51 0.61 0.50 0.56 0.75

Make coffee 0.53 0.88 0.75 0.88 0.71 0.75 0.71 0.75 0.75 0.71

Splitwise Average MAP 0.30 0.40 0.36 0.35 0.39 0.41 0.41 0.42 0.41 0.41

Fig. 3: MAP result table for the Composite Cooking dataset. Column TB
presents the MAP scores from a temporally binned BoW classifier [3] with 3,
5 and 7 temporal partitions. MAP scores for MKSS and RMSS algorithm for
different number of states (3, 5 and 7) is also given for each action. The highest
MAP score across states is highlighted.

the video is divided into 3, 5 and 7 equal length partitions, and histogram of
codewords computed from each partition are concatenated together. We observe
considerable improvement in MAP values compared to the BoW classifier, which
we attribute to the temporal pooling of features which is important for complex
event detection. However, the performance starts decreasing as the number of
partitions is increased, which we attribute to the static nature of the partitions,
making them sensitive to variations in the temporal location of primitive actions.

Title Suppressed Due to Excessive Length 13

(a) Methodology MAP

Bag of Words SVM 30.19%

SVM-MeanSGD [12] 32.30%

K-Segment Selection [11] 31.30%

Temporal Binning T-3 [3] 40.30%

Temporal Binning T-5 [3] 36.60%

Temporal Binning T-7 [3] 34.70%

Temporal Binning Best [3] 41.74%

MKSS : 3 states 39.40%

MKSS : 5 states 41.20%

MKSS : 7 states 41.00%

MKSS Best 43.57%

RMSS : 3 states 42.30%

RMSS : 5 states 41.00%

RMSS : 7 states 41.40%

RMSS Best 47.80%

(b)

(c)

Se
p

er
at

in
g

an
 e

gg

Fig. 4: (a) MAP result table. (b) 3-State segment selection result for Seperating
an egg with representative frames of the selected segments. (c) 5-State segment
selection result with comparisons of the frames selected by each state.

We next evaluate both the MKSS and RMSS algorithms for three different
number of states: 3, 5 and 7. The optimal number of states is a function of
the complexity of the underlying event in the video, and also the amount of
variety present across videos of the same event class. Figure 4(a) shows the
average MAP over all classes of the MKSS and RMSS algorithm for the different
number of states, and also the average of the best performance. The MKSS
and RMSS algorithms achieve on average an MAP score of 41.47% and 47.80%
respectively. Our method outperforms the SVM-MeanSGD [12] algorithm, which
learns a SVM classifier using chi-square kernels and reports a score of 32.30%.
We note, that [12] also reports an MAP score of 53.9% using external textual
scripts to guide the classifier training, however our focus is on purely computer
vision based approaches, and expect our algorithm to also benefit from similar
complimentary modalities. We also implemented the K-segment selection [11]
algorithm and evaluated it on the dataset. We observe only a minor improvement
in performance over traditional BoWs, which we attribute to its lack of temporal
structure modeling, which is crucial for classifying long term composite events.

14 Prithviraj Banerjee and Ram Nevatia

6.2 Segment Selection results

Solving the MKSS and RMSS algorithms provides us with the optimum segment
selection indicator vector h, whose elements are real valued numbers between 0
and 1. For visualizing the segments assigned higher selection weights, we thresh-
old the indicator values h such that atleast 40% of ‖h‖1 is retained. Figure 4 (b)
shows the results of the multistate segment selection algorithm for 3 states on a
seperate an egg video. We note the clear decomposition of the selected segments
into three temporal states, where state-A (red) appears before state-B (green),
which is followed by state-C (blue). The states are learned automatically from
the training data, and it is difficult to associate a single primitive action with
each state. However, we can discern some interesting trends through visual in-
spection of the results. For example, state-B seems to correspond to working at
the counter station, and as the video contains extended periods at the counter,
our model only selects some parts of the video. State-A seems to correspond
to moving to back of the room and opening a door, and is detected twice in
the video where the person approaches the cupboard and the refrigerator. The
intervening frames are not important to state-A and are ignored in its score
computation. State-C seems to correspond to the person moving to the side to
wash the dishes, or to keep them away.

Figure 4 (c,d) compares the segment selection applied to two different videos
of the: separate an egg activity, where the algorithm assumes a 5-state model,
and we see a correlation between the types of primitive actions each of states
correspond to across the videos. We note that each state can represent a cluster
of features, and hence may correspond to multiple primitive actions and scenes.
This becomes more apparent in videos where the actor interchanges the actions
of approaching the refrigerator and approaching the cupboard. As our states do
not have a semantic understanding of what a refrigerator or a cupboard is, it
only recognizes the gross spatio-temporal motions occurring in the scene.

7 Conclusions

We presented a novel multistate segment selection algorithm for pooling features
from the discriminative segments of a video. We presented a solution based on
efficiently solving a linear programming optimization, and formulate linear con-
straints to enforce temporal ordering among the states representing the primitive
actions of an event. We also presented a provably faster solution to the single
state K-segment selection problem [11] and improve the computation time to
O(N logN). Finally, we presented a regularized version of the multistate seg-
ment selection algorithm, which automatically determines the number of seg-
ments to be selected for each state in a given video. We evaluated our algorithm
on the Composite Cooking Activity dataset [12], and showed significantly im-
proved results compared to other static and dynamic pooling algorithms. One
promising approach for future work is to extend the algorithm to incorporate
semantic mappings between the states and the underlying feature distributions,
and explore automated methods of determining the optimal number of states.

Title Suppressed Due to Excessive Length 15

References

1. Ryoo, M., Aggarwal, J.: Spatio-temporal relationship match: Video structure com-
parison for recognition of complex human activities. In: ICCV. (2009)

2. Niebles, J.C., Chen, C.w., Fei-fei, L.: Modeling Temporal Structure of Decompos-
able Motion Segments for Activity Classification. In: ECCV. (2010)

3. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human
actions from movies. In: CVPR. (2008)

4. Kovashka, A., Grauman, K.: Learning a Hierarchy of Discriminative Space-Time
Neighborhood Features for Human Action Recognition. In: CVPR. (2010)

5. Oneata, D., Verbeek, J., Schmid, C.: Action and event recognition with Fisher
vectors on a compact feature set. In: ICCV. (2013)

6. Sun, J., Wu, X., Yan, S., Cheong, L., Chua, T., Li, J.: Hierarchical spatio-temporal
context modeling for action recognition. In: CVPR. (2009)

7. Lv, F., Nevatia, R.: Single view human action recognition using key pose matching
& viterbi path searching. In: CVPR. (2007)

8. Natarajan, P., Singh, V., Nevatia, R.: Learning 3D Action Models from a few 2D
videos. In: CVPR. (2010)

9. Gaidon, A.: Actom sequence models for efficient action detection. In: CVPR.
(2011)

10. Tian, Y., Sukthankar, R., Shah, M.: Spatiotemporal Deformable Part Models for
Action Detection. In: CVPR. (2013)

11. Li, W., Yu, Q., Divakaran, A.: Dynamic Pooling for Complex Event Recognition.
In: ICCV. (2013)

12. Rohrbach, M., Regneri, M., Andriluka, M.: Script data for attribute-based recog-
nition of composite activities. In: ECCV. (2012)

13. Fathi, A., Mori, G.: Action recognition by learning mid-level motion features. In:
CVPR, Ieee (2008)

14. Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition
using mined dense spatio-temporal features. In: ICCV. (2009)

15. Schindler, K., Van Gool, L.: Action Snippets: How many frames does human action
recognition require? In: CVPR. (2008)

16. Satkin, S., Hebert, M.: Modeling the Temporal Extent of Actions. In: ECCV.
(2010)

17. Nowozin, S., Bakir, G., Tsuda, K.: Discriminative Subsequence Mining for Action
Classification. In: CVPR, Ieee (2007)

18. Raptis, M., Sigal, L.: Poselet Key-framing: A Model for Human Activity Recogni-
tion. In: CVPR. (2013)

19. Vahdat, A., Cannons, K., Mori, G., Oh, S., Kim, I.: Compositional Models for
Video Event Detection: A Multiple Kernel Learning Latent Variable Approach.
In: ICCV. (2013)

20. Wang, Y., Mori, G.: Hidden Part Models for Human Action Recognition: Proba-
bilistic vs. Max-Margin. PAMI (2010)

21. Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex
event detection. In: CVPR, Ieee (2012) 1250–1257

22. Brendel, W., Fern, A., Todorovic, S.: Probabilistic event logic for interval-based
event recognition. In: CVPR. Number I (2011) 3329–3336

23. Duong, T., Bui, H., Phung, D., Venkatesh, S.: Activity recognition and abnormality
detection with the switching hidden semi-markov model. In: CVPR. (2005)

16 Prithviraj Banerjee and Ram Nevatia

24. Sminchisescu, Kanaujia, A., Li, Dimitris, M.: Conditional models for contextual
human motion recognition. In: ICCV. (2005)

25. Yu, C.N.J., Joachims, T.: Learning structural SVMs with latent variables. In:
ICML. (2009)

26. Felzenszwalb, P., McAllester, D.: A discriminatively trained, multiscale, deformable
part model. In: CVPR. (2008)

27. Boyd, S., Vandenberghe, L.: Convex Optimization (2009)
28. Neill, D.: Fast subset scan for spatial pattern detection. Journal of the Royal

Statistical Society: Series B (. . .74 (2012) 337–360
29. Wang, H., Klaser, A.: Action recognition by dense trajectories. In: CVPR. (2011)

3169–3176

